Tensor product splines and functional principal components
نویسندگان
چکیده
منابع مشابه
Persian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملOn convergence of sample and population Hilbertian functional principal components
In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...
متن کاملG2 Tensor Product Splines over Extraordinary Vertices
We present a second order smooth filling of an n-valent Catmull-Clark spline ring with n biseptic patches. While an underdetermined biseptic solution to this problem has appeared previously, we make several advances in this paper. Most notably, we cast the problem as a constrained minimization and introduce a novel quadratic energy functional whose absolute minimum of zero is achieved for bicub...
متن کاملDynamic Functional Principal Components
In this paper, we address the problem of dimension reduction for sequentially observed functional data (X k : k ∈ Z). Such functional time series arise frequently, e.g., when a continuous time process is segmented into some smaller natural units, such as days. Then each X k represents one intraday curve. We argue that functional principal component analysis (FPCA), though a key technique in the...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2020
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2019.10.006